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Comment on ‘‘Ward identities for transport of classical waves in disordered media’’
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Recently Niehet al. @Phys. Rev. E57, 1145 ~1998!# have considered a version of derivation of the Ward
identities for scalar and vector classical wave field propagation in random media and noted that their results are
in contradiction with those obtained by Barabanenkov and Ozrin@Phys. Lett. A154, 38 ~1991!#. In this
Comment we show that the derivation given by Niehet al. is based on an incorrect equation for the energy-
vertex function where the term that takes into account the contributions of the scatterer polarization to the field
energy is lost. Restoring this term removes the above-noted contradiction.
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Ward identities~WI! for classical and quantum fields i
random media relate the irreducible self-energy~two-point!
functions to the irreducible vertex~four-point! functions and,
in these terms, represent the conservation laws. In the ca
electron-impurity interaction there is a perturbative, diagr
approach to derivation of the WI@1#, which utilizes the idea
that the irreducible vertex has a topological structure of
functional derivative of the mass operator with respect to
exact Green function. In the current decade generalized
for multiple scattering of classical scalar@2,3# and vector
electromagnetic@4,5# waves in random media have been d
rived with the aid of an algebraic method. The principal d
ference between the WI for classical waves and that for
electron transport is connected to that the effective poten
for wave scattering is frequency dependent. Recently ano
version of the WI for classical wave multiple scattering
random media was considered based on a modified T
hashi approach@6# ~see also@7#!. This version of the WI
seems strange being inconsistent with the perturbation
pansion in power series in the effective scattering potent

In the present Comment we show that this version of
WI is erroneous because it was obtained in@6# from an in-
correct equation for the ‘‘energy-vertex’’ function. W
present the correct equation for this function, which leads
the WI found earlier in Refs.@2,3#. For precision, we con-
sider in detail the case of scalar waves.

The time Fourier transform of a scalar fieldw(r ,V) sat-
isfies the Helmholtz equation

@e~r !V21D#w~r ,V!5Q~r ,V!, ~1!

whereQ(r ,V) is the Fourier transform of a source, the d
electric constant ise(r )511de(r ) with the random partde
that is formed, for instance, by a system of identical diel
tric scatterer spheres, randomly distributed in the space.
field, generated by the sourceQ, can be represented in th
form

w~r ,V!5E dr 8G~r ,r 8;V1 i0!Q~r 8,V!, ~2!

where the Green functionG(r ,r 8;v) obeys equation
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@v21D2V~r ,v!#G~r ,r 8;v!5d~r2r 8!. ~3!

Here v is, in general, the complex frequency with a val
depending on choosing the Green function to be the retar
advanced, or causal one;V(r ,v) is given by

V~r ,v!52g~v!de~r !, g~v!5v2 ~4!

and referred to as a scattering or random ‘‘potential.’’
specific designation for the frequency-dependent factorg(v)
in the ‘‘potential’’ is to compare the final results for scal
wave fields with those for the case of the quantu
mechanical electron-impurity system: a formal analogy
tween these physical models is seen through the replace
g(v)→1,v2→E in Eqs.~3! and ~4!.

We will deal with the ensemble-averaged two-po
and four-point Green functions given b
G(1;v1)5^G(r1 ,r18 ;v1)& and F(1,2;v1 ,v2)
5^G(r1 ,r18 ;v1)G(r2 ,r28 ;v2)&. Since averaging restores th
translational invariance, these functions depend on dif
ences between coordinates, and their space Fourier tr
forms can be defined by

Gp~v!5E dr exp@2 ip•~r2r 8!#^G~r ,r 8;v!&,

Fpp8~q;v1 ,v2!5E dR dr dr 8 exp@2 iq•~R2R8!

2 ip•r1 ip8•r 8#^G~R1r /2,R81r 8/2;v1!

3G~R2r /2,R82r 8/2;v2!&. ~5!

Here Gp(v) and Fpp8(q;v1 ,v2) satisfy, respectively, the
Dyson and Bethe-Salpeter~BSE! equations represented i
the form

Gp~v!5@v22p22M p~v!#21, ~6!
©2001 The American Physical Society01-1
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Fp8p~q;v1 ,v2!5Fp
(0)~q;v1 ,v2!

3S dp8p1E
p9

Fp8p9~q;v1 ,v2!

3Kp9p~q;v1 ,v2! D , ~7!

where Fp
(0)(q;v1 ,v2)5Gp1

(v1)Gp2
(v2), p65p6q/2. In

Eq. ~7!, the convention is adopted that*p5(2p)23*dp, and
dpp85(2p)3d(p2p8). The functions M p(v) and
Kpp8(q,v1 ,v2) are usually referred to as the mass opera
~or irreducible self-energy function! and the irreducible
~four-point! vertex function, respectively. Due to the rec
procity condition, the four-point Green function and the co
responding irreducible vertex satisfy the symmetry relatio
given byFpp8(q;v1 ,v2)5Fp8p(q;v1 ,v2) andKpp8(q;v1 ,
v2)5Kp8p(q;v1 ,v2).

In the case of classical waves, a simple approach to d
vation of WI can be based on a close relationship betw
the Green functions,G andF, that does not include the ‘‘po
tential’’ in the explicit form.

Let us consider the function

C~1,2;v1 ,v2!5^V~r1 ,v1!G~r1 ,r18 ;v1!G~r2 ,r28 ;v2!&.
~8!

From the definition of the random potential given by Eq.~4!,
a ‘‘scaling’’ property is easily seen as

g~v1!V~r ,v2!5g~v2!V~r ,v1!. ~9!

Therefore, the functionC satisfies the identity

lim
r1→r2

@g~v2!C~1,2;v1 ,v2!2g~v1!C~2,1;v2 ,v1!#50.

~10!

On the other hand, according to Eq.~3!, C obeys the equa
tion

C~1,2;v1 ,v2!5~v1
21D1!F~1,2;v1 ,v2!

2d~r12r18!G~2;v2!. ~11!

Substituting Eq.~11! into the left-hand side~lhs! of identity
~10! results in a desirable relationship betweenF andG with
the Fourier transform given by

E
p8

@g~v2!~v1
22p18

2!2g~v1!~v2
22p28

2!#Fp8p~q;v1 ,v2!

5g~v2!Gp2
~v2!2g~v1!Gp1

~v1!, ~12!

wherep65p6q/2 andp68 5p86q/2.
In order to transform Eq.~12! to a relation between the

irreducible functions, we introduce the~three-point! vertex
function g defined by
01860
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gp~q;v1 ,v2!5E
p8

gp8
(0)

~q;v1 ,v2!Fp8p~q;v1 ,v2!

3@Fp
(0)~q;v1 ,v2!#21 ~13!

with

gp
(0)~q;v1 ,v2!5g~v2!Gp1

(0)21~v1!2g~v1!Gp2

(0)21~v2!,

~14!

whereGp
(0)(v)5(v22p2)21. According to Eq.~12!, g sat-

isfies the identity

gp~q;v1 ,v2!5g~v2!Gp1

21~v1!2g~v1!Gp2

21~v2!.

~15!

On the other hand, substituting the BSE given by Eq.~7! into
the right-hand side~rhs! of Eq. ~13! yields the equation

gp~q;v1 ,v2!5gp
(0)~q;v1 ,v2!1E

p8
gp8~q;v1 ,v2!

3Fp8
(0)

~q;v1 ,v2!Kp8p~q;v1 ,v2!. ~16!

Substituting the identity~15! into the both sides of this equa
tion with use of the Dyson equation~6! results in the follow-
ing final relationship@2#:

g~v2!M p1
~v1!2g~v1!M p2

~v2!

5E
p8

Kpp8~q;v1 ,v2!

3@g~v1!Gp
18
~v1!2g~v2!Gp

28
~v2!#. ~17!

The relation~17!, derived, as is seen, without any approx
mations can be regarded as a scalar field version of the
which is true for arbitrary momentap1 ,p2 and complex
frequenciesv1 ,v2. Note that the formal replacementg(v)
→1,v2→E reduces Eq.~12! to the well-known version of
the continuity equation, and Eq.~17! to the conventional WI
used in the case of the electron-impurity interaction@1#.

In order to analyze the approach developed by Niehet al.
@6# we need to formulate a scalar field version of the Po
ting theorem written in terms of the Green function.

In the case of classical scalar field, the spectral dens
of the energy density and the energy flux density~Poynting
vector! averaged over ensemble are defined, respectively
@8#

W5
1

2
^V1V2ew* w1“w* •“w&, ~18!

S5
i

2
^V1w“w* 2V2w*“w&, ~19!

where the complex frequencies are given byV65V6(v
1 i0)/2, the time Fourier transforms of the fields are deno
as w[w(r ,V1) and w* [w* (r ,V2), and the same nota
1-2
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tions are used for the sourceQ(r ,V) related to field by Eq.
~2!. Thus, according to Eq.~1!, the energy conservation law
can be written as

ivW2div S5
i

2
^V2w* Q2V1Q* w&, ~20!

wherev5V12V2 .
There are two ways to derive the equation that repres

the conservation law in terms of the Green functions. T
first, straightforward way is based on Eq.~2! and consists of
calculating the second functional derivative of the lhs and
rhs of Eq.~20! with respect to the sourceQ.

The second~and maybe, more simple! way utilizes an
observation that Eq.~20! can be obtained by averaging of th
part-by-part difference between Eq.~1! for w(r ,V1) multi-
plied by the factorV2w* (r ,V2) and Eq.~1! for w* (r ,V2)
multiplied by the factorV1w(r ,V1). In terms of the Green
functions, such a procedure means calculating the part
part difference between Eq.~3! for G(r1 ,r18 ;v1) multiplied
by the factorv2G(r2 ,r28 ;v2) and Eq.~3! for G(r2 ,r28 ;v2)
multiplied by the factorv1G(r1 ,r18 ;v1). Hence, the Green
function equivalent of the conservation law takes the form

lim
r1→r2

$@v2~D11v1
2!2v1~D21v2

2!#F~1,2;v1 ,v2!

2v12@C~1,2;v1 ,v2!2C~2,1;v2 ,v1!#%

5 lim
r1→r2

@v2d~r12r18!G~2;v2!2v1d~r22r28!G~1;v1!#,

~21!

where v125v1v2 /(v11v2), v1 and v2 are the complex
frequency, in particular,v1,25V6 , the functionC is de-
fined by Eq.~8!. Note that here we make use of the equal

lim
r1→r2

@v2C~1,2;v1 ,v2!2v1C~2,1;v2 ,v1!#

5v12 lim
r1→r2

@C~1,2;v1 ,v2!2C~2,1;v2 ,v1!#,

~22!

which follows directly from the precursor to the WI Eq.~10!.
It is seen that the first pair of terms in the lhs of Eq.~21!
including the functionF corresponds term by term to the lh
of the energy conservation law given by Eqs.~18!–~20! with
the exception of the term in the energy density~18! propor-
tional to the random part of the dielectric constant,de, re-
lated to the scatterer polarization. This part of the dielec
constant is taken into account in the second pair of term
the lhs of Eq.~21! including the functionC.

The Green-function representation of the conserva
law given by Eq.~21! can be used as a starting point f
alternative derivation of the WI. Indeed, the Fourier tran
form of this equation multiplied by the facto
@G(1;v1)G(2;v2)#21 can be represented as

g̃p~q;v1 ,v2!5v2Gp1

21~v1!2v1Gp2

21~v2!, ~23!
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wherep65p6q/2 and

g̃p~q;v1 ,v2!5gp
(e)~q;v1 ,v2!1gp

(v)~q;v1 ,v2!. ~24!

The functionsg (e) and g (v), corresponding, respectively, t
the first and the second pairs of terms in the lhs of Eq.~21!,
are defined by

gp
(e,v)~q;v1 ,v2!5E

p8
gp8

(e,v0)
~q;v1 ,v2!Fp8p~q;v1 ,v2!

3@Fp
(0)~q;v1 ,v2!#21, ~25!

where

gp
(e0)~q;v1 ,v2!5v2Gp1

(0)21~v1!2v1Gp2

(0)21~v2!.

~26!

The explicit expression forg (v0) found from Eqs.~6!, ~7!,
and ~11! is of the form

gp
(v0)~q;v1 ,v2!52v12S DM p~q;v1 ,v2!

2E
p8

DGp8~q;v1 ,v2!Kp8p~q;v1 ,v2! D
~27!

with DGp(q;v1 ,v2)5 1
2 @Gp2q/2(v2)2Gp1q/2(v1)#, and

DM p(q;v1 ,v2) being defined in the same manner.
Substituting the BSE given by Eq.~7! into the rhs of Eqs.

~25! allows us to obtain the integral equation of the ty
~16!,

g̃p~q,v1 ,v2!5g̃p
(0)~q,v1 ,v2!1E

p8
g̃p8~q,v1 ,v2!

3Fp8
(0)

~q;v1 ,v2!Kp8p~q,v1 ,v2! ~28!

with

g̃p
(0)~q,v1 ,v2!5gp

(e0)~q,v1 ,v2!1gp
(v0)~q;v1 ,v2!.

~29!

Finally, it can be shown that substitution of the equality~23!
into the both sides of Eq.~28! leads, after simple algebra, t
the WI, Eq.~17!. It is worth emphasizing that the key poin
of this WI derivation is the use of the equality~22!, which
follows from the ‘‘scaling’’ property~9! of the scattering
‘‘potential.’’

Now we can compare the above equations with those u
by Nieh et al. @6#. They declare the quantum field theory
be the basis for the approach and start with calculating
three-point four-vector function

Nm~x;y,z![^0uT„Tm0~x!w~y!w~z!…u0& ~30!

and the energy-vertex functionGm(yuxuz) defined by
1-3
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^Nm~x:y,z!&52E dy8dz8G~y2y8!G~z2z8!Gm~y8uxuz8!.

~31!

Here u0& represents the ground state of the scalar fieldT
denotes time ordering,Tm0(x) is the energy-momentum ten
sor; the four-dimensional notationxm5(t,r ) is used with the
greek subscript~superscript! denoting four-vector index run
ning over 0,1,2,3.

Comparing Eq.~23! with Eq. ~28! from Ref. @6# one can
conclude that the functiong̃p(q,v1 ,v2) coincides with the
time-space Fourier transform of the type~5! of the four-
divergence of the energy vertex functions,2 i ]x

mGm(yuxus).
Moreover, straightforward calculations based on the W
theorem show that the time Fourier transform of the fo
divergencei ]x

m^Nm& coincides with the lhs of Eq.~21!. Of
J

01860
k
-

course, in accordance with the quantum field theory ru
~see, e.g., Ref.@9#! the energy-momentum tensor in Eq.~30!
should be taken in the form of normal product :Tm0(x):.

However, according to Niehet al. @6#, the time-space
Fourier transform of the four-divergence2 i ]x

mGm(yuxus)
satisfies the equation@see Eq.~30! in @6# # of the type~28!
with the function gp

(e0)(q,v1 ,v2) erroneously replacing

g̃p
(0)(q,v1 ,v2). This means emission of the termg (v) in the

rhs of Eq. ~24! that, in its turn, leads to omission of th
second pair of terms in the lhs of Eq.~21!, which, as men-
tioned above, correspond directly to the terms in the ene
conservation law~18!–~20! including explicitly the scatterer
polarization. Thus, since Eq.~30! from @6# is the basic equa-
tion for the approach developed by Niehet al., we must con-
clude that the ‘‘diffusive Ward identity’’ derived in Ref.@6#
cannot be true.
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