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Comment on “Ward identities for transport of classical waves in disordered media”
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Recently Niehet al. [Phys. Rev. B57, 1145(1998] have considered a version of derivation of the Ward
identities for scalar and vector classical wave field propagation in random media and noted that their results are
in contradiction with those obtained by Barabanenkov and O#imys. Lett. A154, 38 (1991)]. In this
Comment we show that the derivation given by Nedhal. is based on an incorrect equation for the energy-
vertex function where the term that takes into account the contributions of the scatterer polarization to the field
energy is lost. Restoring this term removes the above-noted contradiction.
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Ward identities(WI) for classical and quantum fields in [02+A—=V(r,w)]G(r,r";w)=8(r—r"). 3)
random media relate the irreducible self-eneftyyo-point
functions to the irreducible vertgfour-poind functions and, L .
in these terms, represent the conservation laws. In the case ?lere @ IS, 1n generql, the complex frequency with a value
electron-impurity interaction there is a perturbative, diagram epending on choosing the Gre_en f_unctlon to be the retarded,
approach to derivation of the WL], which utilizes the idea 2dvanced, or causal oné(r,») is given by
that the irreducible vertex has a topological structure of the
functional derivative of the mass operator with respect to the V(r,w)=—g(w)de(r), g(w)=w? 4
exact Green function. In the current decade generalized WI
for multiple scattering of classical scal@?,3] and vector

electromagneti¢4,5] waves in random media have been de'specific designation for the frequency-dependent fagtar)

rived with the aid of an algebraic method. The principal dif- in the “potential” is to compare the final results for scalar
ference between the WI for classical waves and that for thg .. . ficids with those for the case of the quantum-
electron transport is connected to that the effective pmemiaﬁrgechanical electron-impurity system: a formal analogy be-
for wave scattering Is freque_zncy dependen_t. Recently .anof[h‘?\yveen these physical models is seen through the replacement
version of the WI for classical wave multiple scattering in

o .
random media was considered based on a modified Takzg—(a\;\)/:%\';i‘l’l _d)eEalmvﬁghS.(tﬁiaagi(szghble-avera ed two-point
hashi approacli6] (see alsq7]). This version of the WI and 9 P
seems strange being inconsistent with the perturbation ex= . | ,. .
pansion in power series in the effective scattering potential).&;(l’wl)_,<g(r1‘r1’w,1)> . and F(1,2,w1,w2)
In the present Comment we show that this version of the (9(T1:M1;@1)G(r2.r3;w,)). Since averaging restores the

WI is erroneous because it was obtained6h from an in- translational invariance, these functlo_ns depend on differ-
correct equation for the “energy-vertex” function. We ences between coordinates, and their space Fourier trans-

present the correct equation for this function, which leads t§°rms can be defined by
the WI found earlier in Refd.2,3]. For precision, we con-
sider in detail the case of scalar waves. )
The time Fourier transform of a scalar fiegdr,Q)) sat- Gp(“’):J drexd —ip-(r—r")|(G(r,r'";w)),
isfies the Helmholtz equation

and referred to as a scattering or random “potential.” A

four-point Green functions given by

e(nQ?+Ale(r,Q)=0(r,Q), 1
Le(r) Je(r)=Q(r.&) @ Fpp,(q;wl,w2)=f dRdrdr'exg—ig-(R—R")
whereQ(r,Q) is the Fourier transform of a source, the di-

electric constant ig(r) =1+ Se(r) with the random parbe —ip-r+ip - r'{G(R+r2R"+r1'12;wq)

that is formed, for instance, by a system of identical dielec- .

tric scatterer spheres, randomly distributed in the space. The XGR=TI2R' =1'12,w,)). ®)

field, generated by the sour€g can be represented in the

form Here Gp(w) and Fp,(0; 01, ;) satisfy, respectively, the
Dyson and Bethe-Salpet€BSE) equations represented in

<p<r,m=f dr'g(r,r';Q+i0)Q(r',Q),  (2) theform
where the Green functioi(r,r’;w) obeys equation Gp(w)=[w?~p*~My(w)] 1, (6)
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Foro(dwr,w)=FO(q o, w,)
p’'p ywi,Wo2 p ywi,W2

X

5prp+ Jp”Fp/pn(q; (1.)1,(1)2)
XKp//p(q;wl,ﬂ)z)), (7)

where F{(q; w1,02) =Gy (01)Gp (@), P~=p=q/2. In
Eq. (7), the convention is adopted thﬁ1§=(2w)‘3fdp, and
Sopr=(2m)%5(p—p’). The functions M,(w) and

Kpp'(d,01,0,) are usually referred to as the mass operato

(or irreducible self-energy functignand the irreducible

(four-poiny vertex function, respectively. Due to the reci-
procity condition, the four-point Green function and the cor-
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vp(q;wl,wz)=fp,7@9)(q:wl,wz)Fprp(q:wl,wz)

X[FO(qw1,07)]71 (13

with

YU 01,02)=9(02) G Hw1) ~g(01) G Hwy),
(14

whereG{?(w) = (w?—p?) ~*. According to Eq(12), y sat-
isfies the identity

r

p(d; 01,02) =9(02) Gy, (1) —g(01) G, H(w).
(15

responding irreducible vertex satisfy the symmetry relationgy, the other hand, substituting the BSE given by @ginto

given by F,, (Q; @1, 0,) =F (0 01, 07) andK,, (g o1,
wz):Kp’p(q;wlva)-

the right-hand sidérhs) of Eq. (13) yields the equation

In the case of classical waves, a simple approach to deri-
vation of WI can be based on a close relationship between yp(q;wl,w2)=yﬁ,o)(q;wl,wzHf Yp(Qior,0))
p

the Green functions; andF, that does not include the “po-
tential” in the explicit form.
Let us consider the function

11'(1,2;w1,w2)=<V(r1,wl)Q(rl,ri;wl)g(rz,ré;w2)>.( )
8

From the definition of the random potential given by E4),
a “scaling” property is easily seen as

g(w)V(r,03) =g(w)V(r,wq). 9)
Therefore, the functior satisfies the identity
lim [g(w2) ¥ (1,201, 07) —g(w1)¥(2,1;0;,,01)]=0.
r1—ro
(10

Qn the other hand, according to E&), ¥ obeys the equa-
tion
V(1201,05) = (0]+A)F(1201,0,)
—8(ri—1})G(2;w,). (1D
Substituting Eq(11) into the left-hand sidélhs) of identity

(10) results in a desirable relationship betwdeand G with
the Fourier transform given by

fp,[g(wzxwi—p;2>—g<wl><w§—p’2>]Fprp<q;w1.w2>
:g(wZ)pr(wZ)_g(wl)Ger(wl): (12

wherep.=p=q/2 andp,=p’' = qg/2.

In order to transform Eq(12) to a relation between the
irreducible functions, we introduce thghree-point vertex
function y defined by

XFO(Q01,02)Kprp(Giw,05). (16)

Substituting the identity15) into the both sides of this equa-
tion with use of the Dyson equatid6) results in the follow-
ing final relationshig2]:

J(w2)M; (w1)—g(w))Mp (@)

= fp’ Kpp’(q;wluwZ)
X[9(@1)Gp' (1)~ 9(w)Gpr (w2)]. (17)

The relation(17), derived, as is seen, without any approxi-
mations can be regarded as a scalar field version of the WI,
which is true for arbitrary momentp, ,p_ and complex
frequencieswq,w,. Note that the formal replacemeg{w)
—1,w>—E reduces Eq(12) to the well-known version of
the continuity equation, and E¢L7) to the conventional WI
used in the case of the electron-impurity interactibh

In order to analyze the approach developed by Nieal.

[6] we need to formulate a scalar field version of the Poyn-
ting theorem written in terms of the Green function.

In the case of classical scalar field, the spectral densities
of the energy density and the energy flux dengRpynting
vecton averaged over ensemble are defined, respectively, by
(8]

1
W=, Q ep*o+Ve* Vo), (18)

i
S=H(QieVe =0 ¢*Vo), (19

where the complex frequencies are given By =Q =+ (w
+i0)/2, the time Fourier transforms of the fields are denoted
as o=¢(r,Q2,) and ¢*=¢*(r,Q)_), and the same nota-
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tions are used for the sour(r,Q) related to field by Eq. Wherep.=p=*q/2 and
(2). Thus, according to Eq1), the energy conservation law

can be written as VoG 01,02) = ¥ (G 01, 0,) + YW (G 01, 0,). (24)
- - i The functionsy® and ), corresponding, respectively, to

_ — * ) — * ’ ’ y

loW=div'S 2<Q‘(P Q-Q.Q%), 20 the first and the second pairs of terms in the Ihs of @4),

are defined by
wherew=Q_,—-0_.

There are two ways to derive the equation that represents (00) (€00)
the conservation law in terms of the Green functions. The ¥p " (inl,wz):f Yp (Gw1,02)Fprp(Qie,07)
first, straightforward way is based on E@) and consists of P
calculating the second functional derivative of the lhs and the ><[F§J°)(q; wy,wy)] 7Y, (25)
rhs of EQ.(20) with respect to the sourad®@.

The secondiand maybe, more simplevay utilizes an  where
observation that Eq20) can be obtained by averaging of the
part-by-part difference between E@) for ¢(r,Q ) multi- yéeo)(q;wl,w2)=széoj’l(wl)—leé,O_)’l(wz).
plied by the factol) _¢* (r,Q)_) and Eq.(1) for ¢*(r,Q_) (26)
multiplied by the facto) , ¢(r,Q.). In terms of the Green
functions, such a procedure means calculating the part-byFhe explicit expression foy(*® found from Egs.(6), (7),
part difference between E3) for G(ry,r;;w;) multiplied  and(11) is of the form
by the factorw,G(r,,r5;w,) and Eq.(3) for G(r,,r;;w,)
multiplied by the factorw,G(r,r1;w;). Hence, the Green- 20, . B ]
function equivalent of the conservation law takes the form VE’ )(q’wl’wZ)_zwlz(AMp(q’wl‘wz)

lim A+ 02) = 01(Ar+ 02)F(1,2,01,0,)
r1_”2{[602( 1+t o) —w1(Ar+ 03)]F (1,201, 0, _fp,AGp'(q;wl!wZ)Kp’p(q;wl'wZ)
—wlz[\lf(l,z;wl,wz)—‘I’(Z,l;wz,wl)]} (27)
= lim [0,8(r,—11)G(2;wy) — 018(r,—15)G(1;w4)],

with  AGy(q;@1,02)=3[Gp- g2 @2) — Gprga(@1)], and
AM,(g; w1, w5) being defined in the same manner.

(21 Substituting the BSE given by E(7) into the rhs of Egs.
(25 allows us to obtain the integral equation of the type
(16),

ri—ro

where w1,= 0,0,/ (w;+ ), ®; and w, are the complex
frequency, in particularw; ,=( . , the functionV is de-
fined by Eq.(8). Note that here we make use of the equality

3 =70 + | Yy
im [0, ¥ (1,201,0,) — 01¥(2,L0,,01)] 7p(0:01,02)= 7 (0,01, 02) fpfyp (@ oz,2)

ri—ro

= w1 Ilm [W(laz;wlawZ) _q,(zal;w2=wl)]a

r—rs

XFEA@ 01, 02)Kprp(d,01,07) (28

with
(22)

~(0 0 0 .
’)/E) )(qiwlva):')/é)e )(qvwlvw2)+’)/g) )(qiwlin)'

which follows directly from the precursor to the WI Ed.0). 29

It is seen that the first pair of terms in the |hs of EQ1)
including the functiorF corresponds term by term to the Ihs

of the energy conservation law given by EGES)—(20) with Finally, it can be shown that substitution of the equal2g)

h _ t th i th denslt into the both sides of Eq28) leads, after simple algebra, to
the exception of the term in the energy den<lt) propor- the WI, Eq.(17). It is worth emphasizing that the key point

tional to the random part c.)f the dieleptric constabé, 1e- ot i Wi derivation is the use of the equalit22), which
lated to the scatterer polarization. This part of the dlelectrlch"OWS from the “scaling” property(9) of the scattering
constant is taken into account in the second pair of terms mpotential "

the lﬁs of Eq.(2f1) inpluding the func.tion‘P.f h . Now we can compare the above equations with those used
The Green-function representation of the conservation,y \jien et al. [6]. They declare the quantum field theory to

Ia}w given bdy Eq.(2D) c?nhbev\flseld das da sr;[artli:ng point for he the hasis for the approach and start with calculating the
alternative derivation of the WI. Indeed, the Fourier tranS-yae noint four-vector function

form of this equation multiplied by the factor
. . -1
[G(Liw1)G(2:wz)]" can be represented as NGy, 2 =0 T(T,0(0e()e@)[0) (30

~ _ —1 _ —1
Yp(diw1,02) =036y (w1) =016y (w2),  (23) gy the energy-vertex functidn, (y|x|z) defined by
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N0y 2) == [ dy dzGy-y)G-2)T ' [z,
(31

Here |0) represents the ground state of the scalar figld,
denotes time ordering, ,o(X) is the energy-momentum ten-
sor; the four-dimensional notatiott = (t,r) is used with the
greek subscriptsuperscriptdenoting four-vector index run-
ning over 0,1,2,3.

Comparing Eq(23) with Eq. (28) from Ref.[6] one can
conclude that the functioﬁp(q,wl,wz) coincides with the
time-space Fourier transform of the ty|§8) of the four-
divergence of the energy vertex functionsjd;T ,(y|x|s).
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course, in accordance with the quantum field theory rules
(see, e.g., Ref9]) the energy-momentum tensor in E§O)
should be taken in the form of normal produ@t,,(x):.
However, according to Nielet al. [6], the time-space
Fourier transform of the four-divergenceid}T ,(y|x|s)
satisfies the equatiofsee Eq.(30) in [6]] of the type(28)
with the function yéeo)(q,wl,wz) erroneously replacing

Y20, 01, @,). This means emission of the terp®) in the

rhs of Eq.(24) that, in its turn, leads to omission of the
second pair of terms in the lhs of E(1), which, as men-
tioned above, correspond directly to the terms in the energy
conservation law18)—(20) including explicitly the scatterer
polarization. Thus, since E§30) from [6] is the basic equa-

Moreover, straightforward calculations based on the Wickiion for the approach developed by Niehal., we must con-
theorem show that the time Fourier transform of the four-clude that the “diffusive Ward identity” derived in Ref6]

divergencei 9(N,,) coincides with the Ihs of Eq(21). Of

cannot be true.
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